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Abstract

In this investigation, an attempt to predict the wear behaviour of hybrid metal matrix composites (MMCs) was carried out using artificial neural network (ANN) as well as the design of experiment (DoE) approaches. The investigated composite alloy was AA6063 aluminium alloy reinforced with 5 vol.-% Al2O3 and 5 vol.-% TiC particles. The particles were synthesized by self-propagating high temperature synthesis (SHS) technique. The composite was fabricated using stir casting method. General equations for predicting the effect of the applied load and sliding speed on wear resistance of the composite alloy were formulated using both ANN and DoE approaches.
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الملخص العربى

فى هذا البحث تم عمل موديل رياضى باستخدام كل من اسلوب الشبكات العصبية الذكية و اسلوب التصميم للتجارب و ذلك لتوقع سلوك البرى لسبائك الموئلفات المهجنة ذات الاساس المعدنى. و قد تم دراسة سلوك البرى للسبيكة 6063 و المدعمه بنسبة 10% من الحجم بحبيبات كربيدات التيتانيوم و اكسيد الالومنيوم بواقع 5% من الحجم لكل من النوعين.  وقد تم تصنيع الحبيبات باسلوب التغلغل الذاتى عند درجات الحرارة المرتفعة. اما السبيكة المؤتلفة فقد تم تصنيعها بطريقة السباكة الدوامية. و لقد تم ايجاد معادلات رياضية تصف تأثير كل من السرعة و الحمل على سلوك البرى للسبيكة المؤتلفة بكل من الطريقتين السابق ذكرهما.
1.
Introduction

Aluminium-based, particulate-reinforced metal matrix composites (MMCs) are of interest for structural applications where weight saving is of primary concern [1]. Ceramic particles in the ductile matrix can lead to desirable properties [2]. These properties include increased strength, higher elastic modulus, higher service temperature, and improved wear resistance. It is known that wear resistance of composite material is mainly related to particles volume fraction, morphology, and strength of interface [3,4]. Moreover, load and speed of sliding also alter wear performance of materials [5-7]. Zhang and Alpas [5] studied the effect of the load on the unlubricated sliding wear behaviour of a 6061 Al alloy reinforced with 20 vol% Al2O3 particles using a block-on-ring type wear rig. They found that the wear resistance of 6061 Al–20% Al2O3 is strongly affected by the applied load. Increasing the applied load increases the wear rate of the composite. In a more detailed investigation, Mehmet and Ferhat [6] studied the effect of the applied load, sliding distance and oxidation on the dry sliding wear behaviour of Al-10%Si/SiC particulate composite produced by vacuum infiltration technique. They showed that the wear rate of composite increases with increasing sliding distance as well as the applied load. The same results were obtained by Straffelini et al [7].
Artificial neural network (ANN) is a general-purpose tool for numerical modelling that is suitable to map complex functions. The strongest reason for using neural networks is their ability to generalise when confronted with new situations. Artificial neural network does not require a priori knowledge about problems, which they are intended to solve; they are able to tolerate disruptions or discontinuities, accidental gaps or loss in the learned data set. Over the last several years, ANN have gained increasing interest in the field of materials engineering [8,9]. The growing popularity of ANN is due to their ability to model relations between investigated variables with no need to know the physical model of the phenomena. The results provided by neural networks very often exhibit better correlation with experimental data than those obtained from empirical explorations or mathematical models of the processes under investigation. 

Another approach which has become a much more attractive tool to practicing engineers and scientists is the design of experiment (DoE) approach [10]. A DoE is a structured, organized method for determining the relationship between factors affecting a process and the output of that process. Statistics play an important role in all steps of the experimental process and too often is the use of statistics confined to the post-experimental phase, namely the analysis of results. Statistical involvement at pre and post stages of the experiment actually facilitates the research process, while ensuring the reliability and the precision of the results.

The aim of this paper is to investigate the capability of using both ANN and DoE approaches to predict the effect of the load and sliding speed on the wear resistance of Al-base AA6063/Al2O3/TiC hybrid MMCs fabricated by vortex method.

2. Experimental Procedures

2.1. Materials and Composites Preparation


The alloy used as a matrix in this investigation was Al alloy AA6063 with the chemical composition listed in Table 1. The TiC and Al2O3 ceramic particles were prepared by self-propagating high temperature synthesis (SHS) technique. The details of the particulate fabrication procedures are listed in ref. [11]. The TiC and Al2O3 particles have size range of 30-90 and 3-20 (m respectively.

A composite alloy containing 5 vol.% Al2O3 and 5 vol.% TiC particulates was prepared using stir casting route. Preparation of the composite alloy was carried out according the following procedures: (1) about 250 grams of the AA6063 Al alloy was melted in a graphite crucible in an electrical resistance furnace; the temperature of the melt was about 680 oC. (2) After complete melting of the alloy, a simple mechanical four blades stirrer, made from stainless steel and coated with bentonite clay, was introduced into the melt and stirring started. (3) During stirring the mixture of the reinforcements particles were added inside the vortex formed by the stirring. The particles were preheated at about 250 oC for 2 hours before addition. (4) After complete addition of the particles to the melt (after 10 min. of stirring), the alloy/particles mixture was poured in a low carbon permanent preheated steel mould. Specimens of composite alloy were prepared metallographically and were studied using an optical microscope.

2.2. Heat Treatment and Hardness Measurements



The composite alloy were solution treated at T6 condition (530 + 1oC) for three hours followed by quenching in cold water. After cooling they were artificially aged at 175 + 1oC for three hours to its peak hardness [11]. Vicker’s hardness test measurements were carried out using a load of 10 Kg. A minimum of ten readings were taken and then average value was determined.

2.3. Wear Experiments 

Dry sliding wear test was conducted on a pin-on-disk wear rig. The wear test was carried out after heat treating the composite alloy. The wear specimens were 8 mm diameter and 12 mm length. The counter disk material was 314 stainless steel (hardness 80-90 HRB). Before wear test, each specimen was ground with 1 µm alumina suspension and the counter disk was ground by 2000 grit SiC paper. Wear test was conducted under dry sliding condition, applied pressures varied from 0.2 to 2.6 MPa, and different sliding speeds of 0.5 to 6.5 m/s. These selected sliding speeds and pressures are typically that of real brake systems. [7] The sliding distances varies from 0.1 to 0.6 Km. Weight loss was obtained by calculating the weighting of the specimens before and after the test using an electronic balance with sensitivity 0.1 mg. The samples were cleaned in an acetone bath and dried in hot air before the test to remove any organic substance. The wear rates (the slopes of the cumulative weight loss versus sliding distance curve) of the investigated alloys were calculated by using the data after the run-in stage.

3. Artificial Neural Network (ANN) Modelling

In the present investigation two ANN models were developed using multilayer perceptron (MLP) and the generalized radial basis function (GRBF) networks. These networks currently form the basis for the majority of practical applications.

The GRBF network is based on the simple intuitive idea that an arbitrary function y(x) can be approximated as the linear superposition of a set of localized basis functions (j(x). A network diagram, as shown in Fig. 1, can represent the structure of the GRBF network. The architecture of a GRBF network consists of three layers— input, output and hidden layers. The hidden layer, situated between the input and output layer, is where the basis functions operate to intervene between the external input and the network output. For most applications the basis functions are commonly chosen to be the Gaussian. Each of these functions Gk computes a localized function of the input vector. The connecting lines between the inputs and the Gaussian functions represent (a) the elements of the vector µk that describes the location of the centre (in input space) and (b) the elements of the vector σk that describes the width or standard deviation of the Gaussian function (in input space). The lines connecting the Gaussian functions to the outputs represent the weights w of the neural network which are comparable to the parameters in the case of curve fitting with simple polynomials. The outputs are then obtained as linear combinations of the values of the Gaussian functions.

An MLP is a network of simple neurons called perceptron. The perceptron computes a single output from multiple real-valued inputs by forming a linear combination according to its input weights and then possibly putting the output through some nonlinear activation function. Mathematically this can be written as:
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where ω denotes the vector of weights, x is the vector of inputs, b is the bias and ( is the activation function. A typical multilayer perceptron (MLP) network consists of a set of source nodes forming the input layer, one or more hidden layers of computation nodes, and an output layer of nodes. The input signal propagates through the network layer-by-layer. The signal-flow of such a network with one hidden layer is shown in Fig. 2.

In order to facilitate the comparisons between predicted values and the desired values for the different networks, an error evaluation was carried out using mean relative error (MRE). The MRE values were calculated by the following expression:
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where di is the desired value, oi the predicted output value and n the number of data. The experimental data consists of 25 measurements of wear rate. To avoid the over fitting problem, the experimental data are divided into two sets, a training data set and a test data set. The model uses only the training data. The test data are then used to check that the model behaves correctly when presented with previously unseen data. The training process involves a search for the optimum non-linear relationship between the input and the output data. Once the network is trained, estimation of the outputs for any given set of inputs is very fast. 
In the present work, the ANN models were developed using STATISTICA neural network software facilities. The input or independent variables are the applied pressure (P) in MPa and the sliding speed (V) in meters per second. The output or dependant variable is the wear rate (WR) in milligrams per meter. Based on the experimental work carried out in the present work, the wear rate data were collected.

4. Design of Experiment Modelling

Experimental design technique was used to verify the influence of sliding speed and applied pressure on the wear rate of the AA6063 reinforced with Al2O3 and TiC particles. A matrix of 2n is chosen, where n represents the number of parameters affecting the wear rate i.e. n = 2. In such a case, four experiments should be carried out. In addition, three experiments at the average condition would be preformed. 

The influence of parameters on the wear can be represented by the general form of the linear regression equation [10]:
y = ao +a1.X1+ a2.X2+ a3. X1.X2 + …                               (3)
Where y represents the measured wear rate of the investigated composite alloy,         ao, a1, a2, and a3 are coefficients and can be computed using the following formula:
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The actual linear equation (3) becomes:
WR = ao + a1
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Where WR is the computed or predicted wear rate, 
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Where Xo is the mean value, and (Xi is the interval. Table 3 represents the general form of a matrix of experimental design suitable for four experiments. Where X1 X2 parameter represents the mutual effects of both parameters X1 and X2, + and – refer to the upper and lower effects of the parameters, respectively. Wi is the measured wear rate of the composites. Table 4 shows the values of the parameters and their intervals, while table 5 illustrates the conditions of the four experiments.

5. Results and Discussion

5.1.
Composite Material Characteristics Evaluation

The microstructure of the AA6063/Al2O3/TiC Al composite is shown in Fig. 3. The figure shows that the distribution of the ceramic particles inside the matrix is fairly uniform. The small block-like particles shown in Fig. 3 are the Al2O3 particulates, while the large axial-like particles are the TiC particulates. Quantitative metallographic investigations showed that the TiC and Al2O3 particles have size range of 30-90 and 3-20 (m respectively and the average volume fraction of the reinforcements was 10+2 percent. The hardness for the composite alloy was found to be 78+5 VHN.

5.2.
Effect of Load and Speed on Wear Rate


Figure 4 shows the weight loss of the composite specimen as a function of sliding distance carried out at different pressures and sliding speeds. From the figure, it can be seen that the wear weight loss increases with increasing sliding distance. For the pressure and sliding velocity investigated in the present work, the weight of material removed by wear is linearly proportional to sliding distance for most conditions, indicating a constant wear rate. Furthermore, most of the pressure data in Fig. 4 exhibits increased weight loss with increasing pressure at a given sliding velocity. The composite specimens exhibited a small initial (run-in) wear stage. During running-in period, the weight loss increases dramatically with increasing sliding distance.
The variation of the wear rate with the applied pressures at different sliding speeds is illustrated in Fig. 5. It is found that the wear rate of the composite specimens increased with the applied pressure. It is clearly evident from the Fig. 5 that there exist certain applied pressure (transition pressure) at which there is a sudden increase in the wear rate of the composite material and this pressure depends on the sliding velocity. The results show that at pressures up to 2 MPa and sliding speeds are between 0.5 and 3.5 m/s, comparatively low wear rates exist, indicating the regime of mild wear. In this regime of mild wear, the AA6063/Al2O3/TiC composite demonstrates significant wear-resistance. At higher pressure and sliding speed, the composite material exhibits a rapid increase in wear rate. At pressures greater than the transition pressure, severe wear occurs, leading to seizure of the materials [11].
The low-magnification examination of worn surfaces at 0.3 MPa shows that the worn surface of the composite alloy was generally much rougher the unreinforced alloy (see Fig. 6a and 6b). For both alloys, with an increase in pressure, the size of the cavities becomes lager and large-grooved regions. Irregular plastic flow lines can be seen indicating the occurrence of extensive plastic deformation during wear. Figures 6c and 6d show high-magnification photographs for typical cavities found at pressure 0.3 MPa in monolithic and composite alloys, respectively. 

It follows from the graphs shown in Fig. 5 that the wear mechanism is strongly dependent upon the sliding speed. The composite alloy shows a transition at 2 MPa when tested at 3.5 and 5 m/s, the same is observed at 1.4 MPa and 6.5 m/s test. The above observation clearly indicates that the employed sliding speeds have a significant effect on the wear rate transition of the composite material. The transition pressure decreases with the increase in speed. This behaviour was observed by many investigators [4-6]. 

5.3. Neural Network Models

The wear rate data obtained from the experimental work have been pre-processed to the required format for the training procedure. After the repeated training and testing procedure, the final GRBF and MLP models configurations for dependence of the wear rate on both the applied pressure and sliding velocity were obtained. Figure 7 illustrates the three-dimensional planes for the predicted results of wear rate for AA6063/Al2O3/TiC composite as a function of pressure and sliding velocity together with experimental data (represented by small black squares). It is easily concluded from these figures that, the experimental data and the predicted results obtained from GRBF and MLP networks are very acceptable. The best GRBF network has very good performance, while the best MLP network has slightly lower performance.

The comparison of the measured wear rate (experimental data) against the predicted wear rate using both ANN methods is shown in Fig. 8. A perfect prediction would be when all the plotted points were on the 45o line (the dashed line). The accuracy of each method can be easily compared by the closeness of the data clusters to this line. The 10% lines (the dotted lines) have also been put into the diagrams to facilitate the comparison. It is clearly seen from Fig. 8 that the experimental and predicted values developed from both networks for the wear rate are very close to each other. The mean relative errors (MRE) of GRBF and MLP models are about 12% and 14%, respectively. According to the MRE values, it is possible to conclude that wear rate can be predicted by GRBF and MLP models with degrees of accuracy of 88 and 86%, respectively. 

Empirical expressions were established from both GRBF and MLP networks for the wear rate. These expressions are useful particularly from the perspective of composite material design. Empirical expressions established as a function of applied pressure and sliding velocity. Equations 7 and 8 give the wear rate expressions for the GRBF and MLP, respectively:
WRGRBF = 0.5782 + 0.2408×V + 0.0324×P + 0.0766×V2 + 0.0103×P2 + 0.2673×V×P + 0.0054×V3 + 0.0023×P3 +0.1036×V×P2 + 0.0287×V2×P
(7)

WRMLP = 0.1710 + 0.0.3948×V + 0.7751×P + 0.0832×V2 + 0.3357×P2 + 0.3573×V×P + 0.0065×V3 + 0.0556×P3 +0.0857×V×P2 + 0.0417×V2×P
(8)
It is important to mention that these expressions are valid only for the application conditions given in this work. As a result it is concluded that considerable savings in terms of cost and time could be obtained from using neural network models. It is also concluded that ANN is a successful analytical tool if properly used.
5.4.
DoE Model

As a first step in the experimental design technique, the lower and upper levels of each parameter should be accurately predetermined. In Eq. 5 X1 stands for the sliding speed parameter while X2 stands for the pressure. The sliding speed varies between 0.5 and 6.5 m/s and its average value, Xo, is 3.5 m/s. Similarly, X2 is the pressure range between 0.2 and 2.6 MPa, where the average value, Xo, is 1.4 MPa. Table 4 represents the values and the intervals for the sliding speed, X1, and the pressure, X2. Tables 5 shows the conditions and the measured wear rate of the specimens.

By using the data which are available in tables 4 and 6, the coefficients ao, a1, a2, and a3 are computed. So, the actual linear Eq. 5 becomes:
WRDoE =1.42 + 0.88
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Where WRDoE is the computed wear rate of specimens using DoE method. Equation 9 illustrates that the effect of the sliding speed and the pressure on the wear rate is similar. Increasing either the sliding speed or the applied pressure increases the wear rate. The effect of the interaction between the sliding speed and the pressure is lower than each of them. A three dimensional representation showing the effect of both the sliding speed and the applied pressure on the wear rate is illustrated in Fig. 9. Figure 10 shows the comparison of the measured wear rate against the predicted wear rate using DoE method. The MRE of DoE model is about 52%, which is a very high error.
It is clear from the above results that the ANN approach gives better estimation of the results than DoE but it should be beard in mind that the number of experiments required to develop the ANN are five times of that required for the DoE approach. So, it seems that if the objective is to look for more accuracy the ANN approach has to be considered while for rough estimation DoE approach is enough.
6. Conclusions

1. The artificial neural network and design of experiment approaches can be considered as good analytical tools. They have potential applications in the field of wear behavior for the design of MMCs. Using these approaches, models can be developed with acceptable accuracy or with significantly reduced number of experimental work. 
2. The GRBF artificial neural network has a better accuracy than MLP network. The GRBF model exhibits an average degree of accuracy of about 88%, while the accuracy of MLP model is about 86%. 

3. The DoE model has a lower accuracy than ANN models but it can be used for rough estimation for predicting the wear behavior of composites with minimum amount of experiments. 
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Table 1. Chemical composition of Al AA6063 alloy

	Alloy
	Chemical composition wt.%

	
	Mg
	Si
	Fe
	Cu
	Al

	6063
	0.46
	0.38
	0.15
	0.01
	Balance



[image: image17]
Fig. 1. Architecture of a high dimensional input 

and output GRBF network [12].
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Fig. 2. Signal-flow graph of an MLP network

Table 3. Matrix of the four experiments.
	Experiment№
	Xo
	X1
	X2
	X1X2
	W

	1

2

3

4
	+

+

+

+
	+

-

+

-
	+

+

-

-
	+

-

-

+
	

	The average
	4
	0
	0
	0
	


Table 4. The parameters and intervals.
	Factors
	X1(velocity)
(m/s)
	X2(pressure)
(MPa)

	The higher

The lower

The average

+ ΔXi (interval)
	6.5

0.5

3.5

3.0
	2.6

0.2

1.4

1.2


Table 5. The conditions of the four experiments
	№

Experiments
	X1
	X2
	X1X2
	Wear rate
(×10-6 g/m)

	1

2

3

4
	6.5

0.5

6.5

0.5
	2.6

2.6

0.2

0.2
	6.5(2.6)

0.5(0.2)

0.5(0.2)

6.5(2.6)
	3.85

0.76

0.74

0.32

	5
	3.5
	1.4
	3.5(1.4)
	0.74
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(a)





(b)

Fig. 3. Optical micrographs showing a typical microstructure of the 
AA6063/Al2O3/TiC composite alloy (a) low magnification (general view) 
(b) high magnification
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Fig. 4. Variation of weight loss with the sliding distance under different pressures and sliding velocities (a) V = 0.5 m/s and (b) V = 6.5 m/s.
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Fig. 5. Variation of wear rate with the applied pressure under different sliding speeds.
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	Fig. 6. SEM photographs of the worn surfaces: (a,c) monolithic alloy at 0.3 MPa , (b,d) composite alloy at 0.3 MPa; (v = 0.4 m/s and sliding distance = 150 m)
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Fig. 7. Response surfaces developed from (a) GRBF and (b) MLP ANN modelling.
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Fig. 8. Predicted data from the trained network versus measured (experimental data) of wear rate values (×10-6) for (a) GRBF and (b) MLP models.
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Fig. 9. Response surface developed from DoE modeling.
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Fig. 10. Predicted data from the DoE versus measured (experimental data) of wear rate values (×10-6).
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